129Xe NMR spectroscopy study of porous cyanometallates.

نویسندگان

  • E Lima
  • J Balmaseda
  • E Reguera
چکیده

Zinc and cadmium hexacyanocobaltates(III) were prepared, and their porous networks were explored using 129Xe spectroscopy. The crystal structures of these two compounds are representative of porous hexacyanometallates, cubic (Fm-3m) for cadmium and rhombohedral (R-3c) for zinc. In the cubic structure, the porosity is related to systematic vacancies created from the elemental building block (i.e., the hexacyanometallate anion), whereas the rhombohedral (R-3c) structure is free of vacant sites but has tetrahedral coordination for the zinc atom, which leads to relatively large ellipsoidal pores communicated by elliptical windows. According to the Xe adsorption isotherms, these porous frameworks were found to be accessible to the Xe atom. The structure of the higher electric field gradient at the pore surface (Fm-3m) appears and is accompanied by a stronger guest-host interaction for the Xe atoms and a higher capacity for Xe sorption. For cadmium, the 129Xe NMR signal is typical of isotropic movement for the Xe atom, indicating that it remains trapped within a spherical cavity. From spectra recorded for different amounts of adsorbed Xe, the cavity diameter was estimated. For the zinc complex, 129Xe NMR spectra are asymmetric because of the Xe atom movement within an elongated cavity. The line-shape asymmetry changes when the Xe loading within the porous framework increases, which was ascribed to Xe-Xe interactions through the cavity windows. The Xe adsorption revealed additional structural information for the studied materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the alkyl ligands on silylated mesoporous MCM-41 using hyperpolarized 129Xe NMR spectroscopy.

Variable-temperature hyperpolarized (HP) 129Xe NMR spectroscopy has been employed to characterize surface properties of mesoporous MCM-41 modified by silylation treatment. The characteristic chemical shifts responsible for Xe-surface interactions exhibit strong correlations with both the surface coverage and chain length of the grafted alkylsilanes. Consequently, the deshielding medium contribu...

متن کامل

Bacterial spore detection and analysis using hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR.

Previously, we reported hyperpolarized 129Xe chemical exchange saturation transfer (Hyper-CEST) NMR techniques for the ultrasensitive (i.e., 1 picomolar) detection of xenon host molecules known as cryptophane. Here, we demonstrate a more general role for Hyper-CEST NMR as a spectroscopic method for probing nanoporous structures, without the requirement for cryptophane or engineered xenon-bindin...

متن کامل

Cell-compatible, integrin-targeted cryptophane-129Xe NMR biosensors.

Peptide-modified cryptophane enables sensitive detection of protein analytes using hyperpolarized 129Xe NMR spectroscopy. Here we report improved targeting and delivery of cryptophane to cells expressing αvβ3 integrin receptor, which is overexpressed in many human cancers. Cryptophane was functionalized with cyclic RGDyK peptide and Alexa Fluor 488 dye, and cellular internalization was monitore...

متن کامل

Applications of laser-polarized 129Xe to biomolecular assays.

The chemical shift sensitivity and significant signal enhancement afforded by laser-polarized 129Xe have motivated the application of 129Xe NMR to biological imaging and spectroscopy. Recent research done by our group has used laser-polarized 129Xe in biomolecular assays that detect ligand-binding events and distinguish protein conformations. The successful application of unfunctionalized and f...

متن کامل

Detection and characterization of xenon-binding sites in proteins by 129Xe NMR spectroscopy.

Xenon-binding sites in proteins have led to a number of applications of xenon in biochemical and structural studies. Here we further develop the utility of 129Xe NMR in characterizing specific xenon-protein interactions. The sensitivity of the 129Xe chemical shift to its local environment and the intense signals attainable by optical pumping make xenon a useful NMR reporter of its own interacti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 23 10  شماره 

صفحات  -

تاریخ انتشار 2007